To the nearest cubic inch, what is the volume of the
right triangular prism?

Answer:
The Volume of right triangular prism is 240 cubic inches
Step-by-step explanation:
Volume of right triangular prism =[tex]\text{Area of base} \times height[/tex]
In triangle ABC
AC = Hypotenuse = 13 in.
AB = Height
BC = Base = 12 in.
Using Pythagoras theorem
[tex]Hypotenuse^2=Perpendicular^2+base^2\\13^2=Perpendicular^2+12^2\\\sqrt{13^2-12^2}=Perpendicular[/tex]
5=Perpendicular
Area of base = [tex]\frac{1}{2} \times Base \times Height = \frac{1}{2} \times 12 \times 5 = 30 in^2[/tex]
Height of prism = 8 in
Volume of right triangular prism =[tex]\text{Area of base} \times height[/tex]
Volume of right triangular prism =[tex]30 \times 8 = 240 in^3[/tex]
Hence The Volume of right triangular prism is 240 cubic inches