Answer:
[tex]Y = 400 p[/tex]
Explanation:
Given that ;
The total cost for 100 firms is TC : [tex]2+ \dfrac{y_2}{2}[/tex]
The marginal cost of one firm will be:
[tex]MC_1 = \dfrac{\delta \ TC}{\delta y}[/tex]
[tex]MC_1 = \dfrac{\delta \ ( 2+ \dfrac{y_2}{2})}{\delta y}[/tex]
[tex]MC_1 = y[/tex]
So; Now , the marginal cost for the all 100 firms is [tex]100 \ MC_1 = 100y = Y_1 = 100 P[/tex]
The total cost for 60 firms is [tex]TC_2 =\dfrac{y^2}{10}[/tex]
The marginal cost of one firm will be:
[tex]MC_2= \dfrac{2y}{10}[/tex]
[tex]MC_2= \dfrac{y}{5}[/tex]
The marginal cost for all the 60 firms will now be:
[tex]60*MC_2 = 60 * \dfrac{y}{5}[/tex]
[tex]5*60*MC_2=60y[/tex]
[tex]300MC_2 = 60 y = Y_2 = 300P[/tex]
Finally; the long run supply function is industry supply function and which is therefore determined as :
[tex]Y = Y_1 +Y_2[/tex]
[tex]Y =100p+ 300 p[/tex]
[tex]Y = 400 p[/tex]