Order the simplification steps of the expression below using the properties of rational exponents. [tex]\sqrt[3]{7}=7^{\frac{1}{3}}[/tex]

A.) [tex]\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}}\cdot ^{\frac{1}{3}}\cdot ^{\frac{1}{3}}=7^{\frac{3}{3}}=7^1=7\\[/tex]

B.) [tex]\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}\cdot 7^{\frac{1}{3}}=7\cdot 7^{\frac{1}{3}}=3\cdot \frac{1}{3}\cdot 7=1\cdot 7=7[/tex]

C.) [tex]\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}=7^{\frac{1}{3}}+\:^{\frac{1}{3}}+\:^{\frac{1}{3}}=7^{\frac{3}{3}}=7^1=7[/tex]

D.) [tex]\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}=7\cdot \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=7\cdot \frac{3}{3}=7\cdot 1=7[/tex]

Respuesta :

The answer is C.) [tex]\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}=7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=7^{\frac{3}{3}}=7^1=7[/tex]

what you plug in for calculator

\left(7^{\frac{1}{3}}\right)^3=7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}\cdot \:7^{\frac{1}{3}}=7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=7^{\frac{3}{3}}=7^1=7