Respuesta :
The ducks' flight path as observed by someone standing on the ground is the sum of the wind velocity and the ducks' velocity relative to the wind:
ducks (relative to wind) + wind (relative to Earth) = ducks (relative to Earth)
or equivalently,
[tex]\vec v_{D/W}+\vec v_{W/E}=\vec v_{D/E}[/tex]
(see the attached graphic)
We have
- ducks (relative to wind) = 7.0 m/s in some direction θ relative to the positive horizontal direction, or
[tex]\vec v_{D/W}=\left(7.0\dfrac{\rm m}{\rm s}\right)(\cos\theta\,\vec\imath+\sin\theta\,\vec\jmath)[/tex]
- wind (relative to Earth) = 5.0 m/s due East, or
[tex]\vec v_{W/E}=\left(5.0\dfrac{\rm m}{\rm s}\right)(\cos0^\circ\,\vec\imath+\sin0^\circ\,\vec\jmath)[/tex]
- ducks (relative to earth) = some speed v due South, or
[tex]\vec v_{D/E}=v(\cos270^\circ\,\vec\imath+\sin270^\circ\,\vec\jmath)[/tex]
Then by setting components equal, we have
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\cos\theta+5.0\dfrac{\rm m}{\rm s}=0[/tex]
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\sin\theta=-v[/tex]
We only care about the direction for this question, which we get from the first equation:
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\cos\theta=-5.0\dfrac{\rm m}{\rm s}[/tex]
[tex]\cos\theta=-\dfrac57[/tex]
[tex]\theta=\cos^{-1}\left(-\dfrac57\right)\text{ OR }\theta=360^\circ-\cos^{-1}\left(-\dfrac57\right)[/tex]
or approximately 136º or 224º.
Only one of these directions must be correct. Choosing between them is a matter of picking the one that satisfies both equations. We want
[tex]\left(7.0\dfrac{\rm m}{\rm s}\right)\sin\theta=-v[/tex]
which means θ must be between 180º and 360º (since angles in this range have negative sine).
So the ducks must fly (relative to the air) in a direction 224º relative to the positive horizontal direction, or about 44º South of West.
