contestada

Arrange the following ratios in descending order: 2:3, 3:4, 5:6, 1:5 5:6 > 3:4 > 2:3 > 1:5 1:5 > 2:3 > 3:4 > 5:6 2:3 > 1:5> 5:6 > 3:4 5:6 >1:5 > 3:4 > 2:3

Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given ratios are 2:3, 3:4, 5:6, 1:5.

We need to arrange these ratios in descending order.

Fraction form of given ratios are

[tex]\dfrac{2}{3},\dfrac{3}{4},\dfrac{5}{6},\dfrac{1}{5}[/tex]

First find LCM of denominators.

[tex]LCM(3,4,6,5)=60[/tex]

Now, make denominator common, i.e., 60.

[tex]\dfrac{2\times 20}{3\times 20},\dfrac{3\times 15}{4\times 15},\dfrac{5\times 10}{6\times 10},\dfrac{1\times 12}{5\times 12}[/tex]

[tex]\dfrac{40}{60},\dfrac{45}{60},\dfrac{50}{60},\dfrac{12}{50}[/tex]

Now, arrange numerator in descending order.

[tex]50>45>40>12[/tex]

[tex]\Rightarrow \dfrac{50}{60}>\dfrac{45}{60}>\dfrac{40}{60}>\dfrac{12}{50}[/tex]

[tex]\Rightarrow \dfrac{5}{6}>\dfrac{3}{4}>\dfrac{2}{3}>\dfrac{1}{5}[/tex]

[tex]\Rightarrow 5:6>3:4>2:3>1:5[/tex]

Therefore, the correct option is A.