The frequency of the applied RF signal used to excite spins is directly proportional to the magnitude of the static magnetic field used to align the spins, with proportionality constant 5 hz/T. If the strength of the applied field is known to be 20 T plus or minus 3 T, which of the following correctly describes the uncertainty in the INVERSE frequency (1/frequency)?
A. 3/2000s
B. 3/5s
C. 1/15s
D. 1/4

Respuesta :

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The uncertainty in inverse frequency is  [tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]

Explanation:

From the question we are told that

   The value of the proportionality constant is  [tex]k = 5 \frac{Hz }{T}[/tex]

   The strength of the magnetic field is  [tex]B = 20 \ T[/tex]

   The change in this strength of magnetic field is  [tex]\Delta B = 3 \ T[/tex]

The magnetic field is given as

           [tex]B = \frac{k}{\frac{1}{w} }[/tex]

Where [tex]w[/tex] is frequency

The uncertainty or error of the field is given as

         [tex]\Delta B = \frac{k }{[\frac{1}{w}^]^2 } \Delta [\frac{1}{w} ][/tex]

The uncertainty in inverse frequency is given  as

           [tex]\Delta [\frac{1}{w} ] = \frac{\Delta B}{k [\frac{1}{w^2} ]}[/tex]

                    [tex]\Delta [\frac{1}{w} ]= \frac{\Delta B}{k (B)^2 }[/tex]

substituting values

                  [tex]\Delta [\frac{1}{w} ]= \frac{3}{5 (20)^2 }[/tex]

               [tex]\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s[/tex]

Ver imagen okpalawalter8