Respuesta :
Answer:
4.437 m/s
Explanation:
Diameter of rotation d is 1.7 m
Radius of rotation = d/2 = 1.7/2 = 0.85 m
If he takes 1.2 sec to complete one revolution, then his angular speed is 1/1.2 = 0.83 rev/s
We convert to rad/s
Angular speed = 2 x pi x 0.83
= 2 x 3.142 x 0.83 = 5.22 rad/s
Speed is equal to the angular speed times the radius of rotation
Speed = 5.22 x 0.85 = 4.437 m/s
In the given case, the speed of the discus at release, If the thrower takes 1.2s to complete one revolution, starting from rest would be - 8.90 m/s.
Given:
- diameter of the circle = 1.7 m
radius f the circle would be = 1.7/2 = 0.85 m
- time taken for one revolution t = 1.2 s
This rotation exercise can be treated using the rotation kinematics.
Angular acceleration:
θ = w₀ t + ½ α t²
t = 1.2 s to give a revolution (T = 2π rad) and with part of the rest the initial angular velocity is zero (wo = 0)
=> θ = 0 + ½ α t²
=> α = 2θ / t²
=> α= 2 × 2π / 1.2²
=> α = 4π = 8.7266 rad / s²
Let's calculate the angular velocity:
=> w = wo + α t
=> w = 0 + α t
=> w = 8.7266 × 1.2
=> w = 10.47192 rad / s
The relationship between linear and angular velocity is
=> r = d / 2
=> r = 1.7 / 2 = 0.85 m
=> v = w r
=> v = 10.47192 × 0.85
=> v = 8.90 m / s
Thus, the correct speed would be - 8.90 m/s
Learn more:
https://brainly.com/question/14663644