Answer:
m<ABC > m<ACB (angle property of a triangle)
Step-by-step explanation:
Given that: ΔABC
AB = AX
Prove: m<ABC > m<ACB
From the given diagram,
ΔABX is an isosceles triangle (two congruent sides and angles)
<AXB = m<ABX = [tex]90^{o}[/tex] (isosceles triangle property)
AC = AX + XC
Thus,
AC > AB
m<ABC = m1 + m3 ≥ [tex]90^{o}[/tex]
m<ACB < [tex]90^{o}[/tex] (acute angle property)
Therefore since in a triangle the longest side is opposite to the greatest angle, then;
m<ABC > m<ACB (angle property of a triangle)