Respuesta :

Answer:

[tex]m(\widehat{EH})[/tex] = 130°

Step-by-step explanation:

Angles subtended at the center by the arcs [tex](\widehat{HG})[/tex] and [tex](\widehat{EF})[/tex] are ∠HPG and  ∠EPF.

Since these angles are the vertical angles both will be equal.

m∠HPG ≅ m∠EPF

3x - 10 = 2x + 10

3x - 2x = 10 + 10

x = 20

Therefore, [tex]m(\widehat{HG})=(3\times 20) - 10[/tex]

                               = 50°

Similarly [tex]m(\widehat{EF})[/tex] = 50°

In the same way angles subtended at the center will be equal.

m∠EPH ≅ m∠FPG

and [tex]m(\widehat{EH})=m(\widehat{FG})[/tex]

Since [tex]m(\widehat{EH})+m(\widehat{FG})+m(\widehat{EF})+m(\widehat{HG})=360[/tex]°

[tex]m(\widehat{EH})+m(\widehat{EH})+50+50=360[/tex]

[tex]2m(\widehat{EH})=360-100[/tex]

[tex]m(\widehat{EH})=130[/tex]

Therefore, measure of arc EH = 130°