Respuesta :

Answer:

[tex]\boxed{\sf \ \ \ x=-4.12 \ or \ x=0.12 \ \ \ }[/tex]

Step-by-step explanation:

Hello,

step 1 - we divide all terms by 2

[tex]2x^2+8x-1=0 <=> x^2+4x-\dfrac{1}{2}=0[/tex]

step 2 - we complete the square

we can notice that

[tex]x^2+4x=(x+2)^2-4[/tex]

so

[tex]2x^2+8x-1=0 <=> x^2+4x-\dfrac{1}{2}=0<=>(x+2)^2-4-\dfrac{1}{2}=0\\[/tex]

step 3 - we move the constant term to the right of the equation

[tex](x+2)^2-4-\dfrac{1}{2}=0\\\\<=> (x+2)^2=4+\dfrac{1}{2}=\dfrac{8+1}{2}=\dfrac{9}{2}[/tex]

step 4 - we take the square root on both sides of the equation

[tex]x+2=\sqrt{\dfrac{9}{2}}[/tex]

or

[tex]x+2=-\sqrt{\dfrac{9}{2}}[/tex]

step 5 - we subtract 2 from both sides

[tex]x+2=\sqrt{\dfrac{9}{2}}<=> x=\dfrac{3}{\sqrt{2}}-2=0.12132...[/tex]

or

[tex]x+2=-\sqrt{\dfrac{9}{2}}<=> x=-\dfrac{3}{\sqrt{2}}-2=-4.12132...[/tex]

so the solutions are 0.12 and -4.12

hope this helps