Respuesta :
Answer:
The first differences are 5, 9, 13, 17, and so the second differences are all 4.
Halving 4 gives 2, so the first term of the sequence is 2n^2.
Subtracting 2n^2 from the sequences gives 1,0,-1-2,-3 which has the nth term -n+2.
Therefore, the formula for this sequence is 2n^2 -n +2.
Answer:
2n^2 - n +2
Step-by-step explanation:
3,8,17,30,47
-------------
this is the final form I got after playing for a while:
- 1. 3= 4*1 + 1 - 2= 4*(1+0) + 1 -2 = 4*(1 + (1-2)(1-1)/2) + 1- 2
- 2. 8= 4*2 + 0 = 4*(2+0)+0= 4*(2+0) + 2-2= 4*(2+ (2-2)(2-1)/2) + 2-2
- 3. 17= 4*4 + 1= 4*(3+1) +1= 4*(3+1) + 3-2= 4*(3+ (3-2)(3-1)/2) + 3-2
- 4. 30= 4*7 +2= 4*(4+3)+2= 4*(4+3) + 4-2= 4*(4+ (4-2)(4-1)/2) + 4-2
- 5. 47= 4*11+ 3= 4*(5+6)+3 = 4*(5+6) + 5-2= 4*(5+(5-2)(5-1)/2) + 5-2
.....
- n. an= 4*(n+(n-2)(n-1)/2)+ n- 2= 4n + 2(n^2 -3n+2) + n-2=
- =4n +2n^2 - 6n +4 + n - 2= 2n^2 - n +2
- an= 2n^2 - n +2
-------------
tested in excel and works:
1 2 3 4 5 6 7 8 9 10
3 8 17 30 47 68 93 122 155 192