Respuesta :

Answer:

a)    [tex]tan (157.5) = \frac{1-cos 315}{sin315}[/tex]

b)

            [tex]sin (165) =\sqrt{ \frac{1-cos (330) }{2}}[/tex]

c)

      [tex]sin^{2} (157.5) = \frac{1-cos (315) }{2}[/tex]

d)

  cos 330° = 1- 2 sin² (165°)

       

         

Step-by-step explanation:

Step(i):-

By using trigonometry formulas

a)

cos2∝  = 2 cos² ∝-1

cos∝ = 2 cos² ∝/2 -1

1+ cos∝ =  2 cos² ∝/2

[tex]cos^{2} (\frac{\alpha }{2}) = \frac{1+cos\alpha }{2}[/tex]

b)

cos2∝  = 1- 2 sin² ∝

cos∝  = 1- 2 sin² ∝/2

[tex]sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}[/tex]

Step(i):-

Given

              [tex]tan\alpha = \frac{sin\alpha }{cos\alpha }[/tex]

          we know that trigonometry formulas

        [tex]sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )[/tex]

         1- cos∝ =  2 sin² ∝/2

      Given

         [tex]tan(\frac{\alpha }{2} ) = \frac{sin(\frac{\alpha }{2} )}{cos(\frac{\alpha }{2}) }[/tex]

put ∝ = 315

      [tex]tan(\frac{315}{2} ) = \frac{sin(\frac{315 }{2} )}{cos(\frac{315 }{2}) }[/tex]

     multiply with ' 2 sin (∝/2) both numerator and denominator

        [tex]tan (\frac{315}{2} )= \frac{2sin^{2}(\frac{315)}{2} }{2sin(\frac{315}{2} cos(\frac{315}{2}) }[/tex]

Apply formulas

 [tex]sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )[/tex]

  1- cos∝ =  2 sin² ∝/2

now we get

 [tex]tan (157.5) = \frac{1-cos 315}{sin315}[/tex]

       

b)

          [tex]sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}[/tex]

               put ∝ = 330° above formula

             [tex]sin^{2} (\frac{330 }{2}) = \frac{1-cos (330) }{2}[/tex]

            [tex]sin^{2} (165) = \frac{1-cos (330) }{2}[/tex]

            [tex]sin (165) =\sqrt{ \frac{1-cos (330) }{2}}[/tex]

c )

         [tex]sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}[/tex]

               put ∝ = 315° above formula

             [tex]sin^{2} (\frac{315 }{2}) = \frac{1-cos (315) }{2}[/tex]

            [tex]sin^{2} (157.5) = \frac{1-cos (315) }{2}[/tex]

           

d)

     cos∝  = 1- 2 sin² ∝/2

   put      ∝ = 330°

       [tex]cos 330 = 1 - 2sin^{2} (\frac{330}{2} )[/tex]

      cos 330° = 1- 2 sin² (165°)