Find the area of the polygon XYZ that has its vertices at X(–3, 6), Y(–3, 1), and Z(5,1). Question 8 options: A) 26 square units B) 20 square units C) 40 square units D) 6.5 square units

Respuesta :

Answer:

Area ≈ 20 square units

Step-by-step explanation:

Using Distance Formula to Find the lengths

Distance Formula = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

Length XY:

=> [tex]\sqrt{(-3+3)^2+(1-6)^2}[/tex]

=> [tex]\sqrt{25}[/tex]

=> 5 units

Length YZ:

=> [tex]\sqrt{(5+3)^2+(1-1)^2}[/tex]

=> [tex]\sqrt{64}[/tex]

=> 8 units

Length ZX:

=> [tex]\sqrt{(-3-5)^2+(6-1)^2}[/tex]

=> [tex]\sqrt{89}[/tex]

=> 9.4

Perimeter:

=> 5+8+9.4

=> 22.4

Semi-Perimeter:

=> 11.2

Using Heron's Formula to find the area:

Area = [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]

Where s is semi perimeter and a,b and c are side lengths

=> Area = [tex]\sqrt{11.2(11.2-5)(11.2-8)(11.2-9.4)}[/tex]

=> Area = [tex]\sqrt{(11.2)(6.2)(3.2)(1.8)}[/tex]

=> Area = [tex]\sqrt{399.9}[/tex]

=> Area = 19.99

=> Area ≈ 20 square units