Answer:
Area ≈ 20 square units
Step-by-step explanation:
Using Distance Formula to Find the lengths
Distance Formula = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
Length XY:
=> [tex]\sqrt{(-3+3)^2+(1-6)^2}[/tex]
=> [tex]\sqrt{25}[/tex]
=> 5 units
Length YZ:
=> [tex]\sqrt{(5+3)^2+(1-1)^2}[/tex]
=> [tex]\sqrt{64}[/tex]
=> 8 units
Length ZX:
=> [tex]\sqrt{(-3-5)^2+(6-1)^2}[/tex]
=> [tex]\sqrt{89}[/tex]
=> 9.4
Perimeter:
=> 5+8+9.4
=> 22.4
Semi-Perimeter:
=> 11.2
Using Heron's Formula to find the area:
Area = [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]
Where s is semi perimeter and a,b and c are side lengths
=> Area = [tex]\sqrt{11.2(11.2-5)(11.2-8)(11.2-9.4)}[/tex]
=> Area = [tex]\sqrt{(11.2)(6.2)(3.2)(1.8)}[/tex]
=> Area = [tex]\sqrt{399.9}[/tex]
=> Area = 19.99
=> Area ≈ 20 square units