Respuesta :
Answer:
Null hypothesis:[tex]p \leq 0.5[/tex]
Alternative hypothesis:[tex]p > 0.5[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing we got:
[tex]z=\frac{0.512-0.5}{\sqrt{\frac{0.5(1-0.5)}{344}}}=0.445[/tex]
Step-by-step explanation:
Information given
n=344 represent the random sample taken
X=176 represent the anumber of boys babies
[tex]\hat p=\frac{176}{344}=0.512[/tex] estimated proportion of boys babies
[tex]p_o=0.5[/tex] is the value that we want to check
z would represent the statistic
[tex]p_v[/tex] represent the p value
Hypotheis to verify
We want to check if the true proportion of boys is less than 50% then the system of hypothesis are .:
Null hypothesis:[tex]p\leq 0.5[/tex]
Alternative hypothesis:[tex]p > 0.5[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing we got:
[tex]z=\frac{0.512-0.5}{\sqrt{\frac{0.5(1-0.5)}{344}}}=0.445[/tex]