Respuesta :

gmany

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

where the slope m is:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (2, -3) and (-6, -1).

Substitute:

[tex]m=\dfrac{-1-(-3)}{-6-2}=\dfrac{2}{-8}=-\dfrac{1}{4}[/tex]

[tex]y-(-3)=-\dfrac{1}{4}(x-2)\\\\y+3=-\dfrac{1}{4}(x-2)\to\text{point-slope form}[/tex]

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

[tex]y+3=-\dfrac{1}{4}(x-2)[/tex]

[tex]y+3=-\dfrac{1}{4}x+\dfrac{1}{2}[/tex]         subtract 3 from both sides

[tex]y=-\dfrac{1}{4}x-2\dfrac{1}{2}\to\text{slope-intercept form}[/tex]

The standard form of an equation of a line:

[tex]Ax+By=C[/tex]

[tex]y+3=-\dfrac{1}{4}(x-2)[/tex]      multiply both sides by 4

[tex]4y+12=-(x-2)[/tex]

[tex]4y+12=-x+2[/tex]        subtract 12 from both sides

[tex]4y=-x-10[/tex]           add x to both sides

[tex]x+4y=-10\to\text{standard form}[/tex]