Which of the following is a solution of the system
x – 2y < 4 and y > – 2x – 5?
1. (1, -4)
2. (-8, 2)
3. (0,0)
4. (-3,0)

Respuesta :

Answer:

Option 3.

Step-by-step explanation:

The given inequalities are

[tex]x-2y<4[/tex]

[tex]y>-2x-5[/tex]

If (a,b) is solution of given system of inequalities, then the above inequalities must be satisfy by the point (a,b).

For point (1,-4),

[tex](1)-2(-4)<4\Rightarrow 9<4[/tex] False

[tex]-4>-2(1)-5\Rightarrow -4>-7[/tex] True

Since, first inequality is false for (1,-4) point, therefore (1,-4) is not the solution.

For point (-8,2),

[tex](-8)-2(2)<4\Rightarrow -12<4[/tex] True

[tex]2>-2(-8)-5\Rightarrow 2>11[/tex] False

Since, second inequality is false for (-8,2) point, therefore (-8,2) is not the solution.

For point (0,0),

[tex](0)-2(0)<4\Rightarrow 0<4[/tex] True

[tex]0>-2(0)-5\Rightarrow 0>-5[/tex] True

Since, both of inequalities are true, therefore (0,0) is a the solution.

For point (-3,0),

[tex](-3)-2(0)<4\Rightarrow -3<4[/tex] True

[tex]0>-2(-3)-5\Rightarrow 0>-11[/tex] False

Since, second inequality is false for (-3,0) point, therefore (-3,0) is not the solution.

Hence, option 3 is correct.