If f(x) = 5x – 1, then f^-1(x)=

Answer:
[tex]\boxed{\sf \ \ \ f^{-1}(x)=\dfrac{x+1}{5} \ \ \ }[/tex]
Step-by-step explanation:
hello
f(x)=5x-1
what can we say about [tex]f^{-1}(x) ?[/tex]
[tex](fof^{-1})(x)=x=f(f^{-1}(x))=5f^{-1}(x)-1[/tex]
so
[tex]5f^{-1}(x)-1=x\\<=> 5f^{-1}(x)-1+1=5f^{-1}(x)=x+1 \ \ \ add \ \ 1\\ <=> f^{-1}(x)=\dfrac{x+1}{5} \ \ \ divide \ \ by \ \ 5[/tex]
hope this helps