Answer:
[tex]r_f=\frac{1}{6}r_i[/tex]
Explanation:
To find the new separation of the charges, you first take into account the formula for the electric force, when the force are separated a distance of ri.
You use the following expression:
[tex]F_i=k\frac{q_Aq_B}{r_i^2}[/tex] (1)
k: Coulomb's constant
qA: charge of A particle
qB: charge of B particle
When the charges are separated to a new distance rf, the new force is 36Fi, if the charges have not changed, you have:
[tex]F_f=36F_i=k\frac{q_Aq_B}{r_f^2}[/tex] (2)
To find the new separation you replace the expression for Fi of the equation (1) into the equation (2) and solve for rf in terms of ri:
[tex]36F_i=36k\frac{q_Aq_B}{r_i^2}=k\frac{q_Aq_B}{r_f^2}\\\\\frac{36}{r_i^2}=\frac{1}{r_f^2}\\\\r_f=\frac{1}{6}r_i[/tex]
The new separation of the charges is 1/6 times of the initial separation