Respuesta :

[tex] \frac{1}{2} [/tex] (-2x - 10) > 3 (4 - 6x)   Use the DIstributive Property on both sides
-x - 5 > 12 - 18x   Add 18x to both sides
17x - 5 > 12   Add 5 to both sides
17x > 17   Divide both sidse by 17
x > 1

Answer:

The solution of the expression is x>1.

Step-by-step explanation:

Given : Expression [tex]\frac{1}{2}(-2x-10) >3(4-6x)[/tex]

To find : Solve the expression ?

Solution :

Step 1 - Write the expression,

[tex]\frac{1}{2}(-2x-10) >3(4-6x)[/tex]

Step 2- Apply distributive property, [tex]a(b+c)=ab+ac[/tex]

[tex]\frac{1}{2}\times (-2x)+\frac{1}{2}\times (-10) >3\times 4+3\times (-6x)[/tex]

[tex]-x-5>12-18x[/tex]

Step 3 - Take like terms together,

[tex]-x+18x>12+5[/tex]

Step 4 - Add the like term,

[tex]17x>17[/tex]

Step 5 - Divide 17 both side,

[tex]x>1[/tex]

Therefore, The solution of the expression is x>1.