Respuesta :
[tex] \frac{1}{2} [/tex] (-2x - 10) > 3 (4 - 6x) Use the DIstributive Property on both sides
-x - 5 > 12 - 18x Add 18x to both sides
17x - 5 > 12 Add 5 to both sides
17x > 17 Divide both sidse by 17
x > 1
-x - 5 > 12 - 18x Add 18x to both sides
17x - 5 > 12 Add 5 to both sides
17x > 17 Divide both sidse by 17
x > 1
Answer:
The solution of the expression is x>1.
Step-by-step explanation:
Given : Expression [tex]\frac{1}{2}(-2x-10) >3(4-6x)[/tex]
To find : Solve the expression ?
Solution :
Step 1 - Write the expression,
[tex]\frac{1}{2}(-2x-10) >3(4-6x)[/tex]
Step 2- Apply distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]\frac{1}{2}\times (-2x)+\frac{1}{2}\times (-10) >3\times 4+3\times (-6x)[/tex]
[tex]-x-5>12-18x[/tex]
Step 3 - Take like terms together,
[tex]-x+18x>12+5[/tex]
Step 4 - Add the like term,
[tex]17x>17[/tex]
Step 5 - Divide 17 both side,
[tex]x>1[/tex]
Therefore, The solution of the expression is x>1.