A 25 cm diameter circular saw blade spins at 3500 rpm. How fast would you have to push a straight hand saw to have the teeth move through the wood at the same rate as the circular saw teeth

Respuesta :

Answer:

The answer is "45.79 m/s"

Explanation:

Given values:

diameter= 25 cm

w= 3500 rpm

Formula:

[tex]\boxed{v=w \times r} \ \ \ \ \ \ _{where} \ \ \ w = \frac{rad}{s} \ \ \ and \ \ \ r = meters[/tex]

Calculating r:

[tex]r= \frac{diameter}{2}[/tex]

  [tex]=\frac{25}{2}\\\\=12.5 \ cm[/tex]

converting value into meters: [tex]12.5 \times 10^{-2} \ \ meter[/tex]

calculating w:

[tex]w= diameter \times \frac{2\pi}{60}\\[/tex]

   [tex]= 3500 \times \frac{2\times 3.14}{60}\\\\= 3500 \times \frac{2\times 314}{6000}\\\\= 35 \times \frac{314}{30}\\\\= 35 \times \frac{314}{30}\\\\=\frac{10990}{30}\\\\=\frac{1099}{3}\\\\=366.33[/tex]

w= 366.33 [tex]\ \ \frac{rad}{s}[/tex]

Calculating v:

[tex]v= w\times r\\[/tex]

  [tex]= 366.33 \times 12.5 \times 10^{-2}\\\\= 366.33 \times 12.5 \times 10^{-2}\\\\= 4579.125 \times 10^{-2}\\\\\boxed{=45.79 \ \ \frac{m}{s}}[/tex]