Respuesta :
Answer:
ΔFHK and ΔGHJ are the similar triangles by SAS similarity theorem.
Step-by-step explanation:
Picture for the given question is missing; find the picture attached.
If [tex]\frac{\text{FH}}{\text{GH}}=\frac{\text{HK}}{\text{HJ}}[/tex] and ∠H ≅ ∠H
Then ΔFHK ~ ΔGHJ
[tex]\frac{\text{FH}}{\text{GH}}=\frac{\text{HK}}{\text{HJ}}[/tex]
[tex]\frac{(12+10)}{10}=\frac{(15+18)}{15}[/tex]
[tex]\frac{22}{10}=\frac{33}{15}[/tex]
[tex]\frac{11}{5}=\frac{11}{5}[/tex]
Since, [tex]\frac{\text{FH}}{\text{GH}}=\frac{\text{HK}}{\text{HJ}}[/tex] and ∠H ≅ ∠H [By reflexive property]
Therefore, ΔFHK and ΔGHJ are the similar triangles by SAS similarity theorem.
Option (3) will be the answer.

Answer:
ΔFHK and ΔGHJ are similar triangles by the SAS similarity theorem.
Step-by-step explanation:
Verified correct with test results.