Two sources of light of wavelength 700 nm are 9 m away from a pinhole of diameter 1.2 mm. How far apart must the sources be for their diffraction patterns to be resolved by Rayleigh's criterion

Respuesta :

Answer:

The distance is  [tex]D = 0.000712 \ m[/tex]

Explanation:

From the question we are told that

    The wavelength of  the  light source is  [tex]\lambda = 700 \ nm = 700 *10^{-9} \ m[/tex]

     The distance from a pin hole is  [tex]x = 9\ m[/tex]

       The  diameter of the pin  hole is  [tex]d = 1.2 \ mm = 0.0012 \ m[/tex]

     

Generally the distance which the light source need to be in order for their diffraction patterns to be resolved by Rayleigh's criterion is

mathematically represented as

              [tex]D = \frac{1.22 \lambda }{d }[/tex]

substituting values

             [tex]D = \frac{1.22 * 700 *10^{-9} }{ 0.0012 }[/tex]

             [tex]D = 0.000712 \ m[/tex]