In a study of academic procrastination, researchers reported that for a random sample of 41 undergraduate students preparing for a psychology exam, the mean time spent studying was 11.9 hours with a standard deviation of 4.5 hours. Compute a 95% confidence interval for μ, the mean time spent studying for the exam among all students taking this course.

Respuesta :

Answer:

The 95% confidence interval is  [tex]10.5 < \mu <13.3[/tex]

Step-by-step explanation:

From the question we are told that

     The  sample size is  [tex]n = 41[/tex]

      The  sample mean is  [tex]\= x = 11.9 \ hr[/tex]

       The standard deviation is  [tex]\sigma = 4.5[/tex]

For  a  95% confidence interval the confidence level is  95%

Given that the confidence level is 95% then the level of significance can be mathematically represented as

                  [tex]\alpha = 100 - 95[/tex]

                  [tex]\alpha = 5 \%[/tex]

                  [tex]\alpha = 0.05[/tex]

Next we obtain the critical values of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table

     The values is

                             [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

                             [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{ \sqrt{n} }[/tex]

substituting values

                           [tex]E = 1.96 * \frac{ 4.5 }{ \sqrt{41} }[/tex]  

                           [tex]E = 1.377[/tex]

The 95% confidence interval is mathematically represented as

          [tex]\= x - E < \mu < \= x - E[/tex]

substituting values

         [tex]11.9 - 1.377 < \mu <11.9 + 1.377[/tex]

         [tex]10.5 < \mu <13.3[/tex]