Respuesta :

Answer:

The answer is option 2.

Step-by-step explanation:

First, you have to find the height of the triangle using Cosine Rule, cosθ = adjacent/hypotenuse :

[tex]cos(θ) = \frac{adj.}{hypo.} [/tex]

[tex]θ = 30,adj. = h,hypo = 18[/tex]

[tex] \cos(30) = \frac{h}{18} [/tex]

[tex]18 \cos(30) = h[/tex]

[tex]h = 9 \sqrt{3} \: m[/tex]

Next, you have to find the area of triangle using Sin Rule, Area = 1/2×a×b×sinC where a, b represent the side length of the angle and C is the angle :

[tex]area = \frac{1}{2} \times a \times b \times sin(C)[/tex]

[tex]let \: a = 9 \sqrt{3} ,b = 18,C = 30[/tex]

[tex]area = \frac{1}{2} \times 9 \sqrt{3} \times 18 \times \sin(30) [/tex]

[tex]area = 70.1 \: {m}^{2} \: (near.tenth)[/tex]

Answer:

70.1

Step-by-step explanation:

This is a 30-60-90 right triangle.

The ratio of side lengths is as follows:

short leg   :   long leg   : hypotenuse

    1            :    sqrt(3)     :       2

The short leg is 1/2 the hypotenuse.

The long leg is sqrt(3) times the short leg.

A = bh/2

A = (18/2)(18/2 * sqrt(3))/2

A = 70.1