Respuesta :

Answer:

[tex]\large \boxed{\mathrm{B. \ 84}}[/tex]

Step-by-step explanation:

[tex]LU[/tex] bisects [tex]RU[/tex] and [tex]UA[/tex].

[tex]RU=UA[/tex]

[tex]3m+21=6m[/tex]

Solve for m.

Subtract 3m from both sides.

[tex]21=3m[/tex]

Divide both sides by 3.

[tex]7=m[/tex]

Calculate [tex]RA[/tex].

[tex]RA=3m+21+6m[/tex]

[tex]RA=9m+21[/tex]

Put m = 7.

[tex]RA=9(7)+21[/tex]

[tex]RA=63+21[/tex]

[tex]RA=84[/tex]

Answer:

B) 84

Step-by-step explanation:

ΔLRU ≅ ΔLAU   {SAS congruent}

Therefore, UA = UR    {CPCT}

 6m = 3m +21

Subtract 3m from both sides

6m - 3m = 3m + 21 -3m

        3m = 21

Divide both sides by 3

    3m/3 = 21/3

m = 7

RA = RU + UA

    = 3m + 21 + 6m {add like terms}

    = 9m + 21   {Plug in m =7}

    = 9*7 + 21

    = 63 + 21

RA = 84 units