Find the length of RA. A. 42 B. 84 C. 14 D. 7

Answer:
[tex]\large \boxed{\mathrm{B. \ 84}}[/tex]
Step-by-step explanation:
[tex]LU[/tex] bisects [tex]RU[/tex] and [tex]UA[/tex].
[tex]RU=UA[/tex]
[tex]3m+21=6m[/tex]
Solve for m.
Subtract 3m from both sides.
[tex]21=3m[/tex]
Divide both sides by 3.
[tex]7=m[/tex]
Calculate [tex]RA[/tex].
[tex]RA=3m+21+6m[/tex]
[tex]RA=9m+21[/tex]
Put m = 7.
[tex]RA=9(7)+21[/tex]
[tex]RA=63+21[/tex]
[tex]RA=84[/tex]
Answer:
B) 84
Step-by-step explanation:
ΔLRU ≅ ΔLAU {SAS congruent}
Therefore, UA = UR {CPCT}
6m = 3m +21
Subtract 3m from both sides
6m - 3m = 3m + 21 -3m
3m = 21
Divide both sides by 3
3m/3 = 21/3
m = 7
RA = RU + UA
= 3m + 21 + 6m {add like terms}
= 9m + 21 {Plug in m =7}
= 9*7 + 21
= 63 + 21
RA = 84 units