Find the side length, b.
Round to the nearest tenth.

Answer:
b ≈ 9.2
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
b² = a² + c² = 6² +7² = 36 + 49 = 85 ( take the square root of both sides )
b = [tex]\sqrt{85}[/tex] ≈ 9.2 ( to the nearest tenth )
Answer:
9.22
Step-by-step explanation:
Since it's a 90° triangle [tex]c^{2} =a^{2} +b^{2}[/tex].
In this example they labeled the hypotenuse as b instead of c are equation is still the same just put the correct variables in the right places.
[tex]b = \sqrt{6^{2} +7^{2} }[/tex]
b = 9.22