Respuesta :
Let the required number be "n"
Then the equation becomes
9n/10 + 6 = 51
9n/10 = 45
To eliminate 9/10,
We multiply both sides with 10/9,
Therefore, n = 45 x (10/9)
Thus, n = 50
The number is 50
Then the equation becomes
9n/10 + 6 = 51
9n/10 = 45
To eliminate 9/10,
We multiply both sides with 10/9,
Therefore, n = 45 x (10/9)
Thus, n = 50
The number is 50
n-the number
[tex]\dfrac{9}{10}\cdot n+6=51\ \ \ \ \ \ |subtract\ 6\ from\ both\ sides\\\\\dfrac{9}{10}n=45\ \ \ \ \ \ |multiply\ both\ sides\ by\ 10\\\\9n=450\ \ \ \ \ |divide\ both\ sides\ by\ 9\\\\\boxed{n=50}[/tex]
[tex]\dfrac{9}{10}\cdot n+6=51\ \ \ \ \ \ |subtract\ 6\ from\ both\ sides\\\\\dfrac{9}{10}n=45\ \ \ \ \ \ |multiply\ both\ sides\ by\ 10\\\\9n=450\ \ \ \ \ |divide\ both\ sides\ by\ 9\\\\\boxed{n=50}[/tex]