Respuesta :
The given functions were
[tex]h(x)=2x+5\: and\:g(x)=8-3x[/tex]
Before we can evaluate [tex]h(g(1.5))[/tex] we need to find an expression for [tex]h(g(x))[/tex].
This is the composition of the two functions. [tex]h(g(x))[/tex] means [tex]g(x)[/tex] becomes an input for [tex]h(x)[/tex]. This means that;
[tex]h(g(x))=h(8-3x)[/tex]
So we need to substitute, [tex]8-3x[/tex] wherever we see [tex]x[/tex] in [tex]h(x)[/tex]
[tex]\Rightarrow h(g(x))=2(8-3x)+5[/tex]
We expand the bracket to obtain;
[tex]h(g(x))=2\times8-2\times3x+5[/tex]
Simplify to obtain;
[tex]h(g(x))=16-6x+5[/tex]
[tex]h(g(x))=21-6x[/tex]
Now we substittute [tex]x=1.5[/tex] in to [tex]h(g(x))=21-6x[/tex] to obtain,
[tex]\Rightarrow h(g(1.5))=21-6(1.5)[/tex]
[tex]\Rightarrow h(g(1.5))=21-9[/tex]
[tex]\Rightarrow h(g(1.5))=12[/tex]
Hence, the value of [tex]h(g(1.5))[/tex] is [tex]1.5[/tex].