Respuesta :

Answer:

Part 1)

[tex](s-r)(x)=(2x+1)-(-x^2+3x)[/tex]

Part 2)

[tex](s-r)(x)=x^2-x+1[/tex]

Step-by-step explanation:

Part 1)

So we have the two functions:

[tex]r(x)=-x^2+3x\text{ and } s(x)=2x+1[/tex]

And we want to find:

[tex](s-r)(x)[/tex]

This is the same as:

[tex]=s(x)-r(x)[/tex]

Substitute:

[tex]=(2x+1)-(-x^2+3x)[/tex]

So, our answer for Part A is:

[tex]=(2x+1)-(-x^2+3x)[/tex]

Part 2)

Let's find our difference.

Distribute the -1:

[tex]=(2x+1)+(x^2-3x)[/tex]

Combine like terms:

[tex]=(x^2)+(2x-3x)+(1)[/tex]

Add:

[tex]=x^2-x+1[/tex]

And we're done!

Answer:

1st box is (2x+1)-(-x^2+3x)    2nd box is x^2 - x + 1

Step-by-step explanation:

took it on edg