Respuesta :
Answer:
Part 1)
[tex](s-r)(x)=(2x+1)-(-x^2+3x)[/tex]
Part 2)
[tex](s-r)(x)=x^2-x+1[/tex]
Step-by-step explanation:
Part 1)
So we have the two functions:
[tex]r(x)=-x^2+3x\text{ and } s(x)=2x+1[/tex]
And we want to find:
[tex](s-r)(x)[/tex]
This is the same as:
[tex]=s(x)-r(x)[/tex]
Substitute:
[tex]=(2x+1)-(-x^2+3x)[/tex]
So, our answer for Part A is:
[tex]=(2x+1)-(-x^2+3x)[/tex]
Part 2)
Let's find our difference.
Distribute the -1:
[tex]=(2x+1)+(x^2-3x)[/tex]
Combine like terms:
[tex]=(x^2)+(2x-3x)+(1)[/tex]
Add:
[tex]=x^2-x+1[/tex]
And we're done!
Answer:
1st box is (2x+1)-(-x^2+3x) 2nd box is x^2 - x + 1
Step-by-step explanation:
took it on edg