Respuesta :

Answer:

[tex]\sin(1395)=-\frac{\sqrt 2}{2}\\\cos(1395)=\frac{\sqrt 2}{2}\\\tan(1395)=-1[/tex]

Step-by-step explanation:

First, instead of doing 1395, let's find its coterminal angles. We can do so by subtracting 360 until we reach a solvable range. So:

[tex]1395-360=1035[/tex]

This is still too high, continue to subtract:

[tex]1035-360=675\\675-360=315\\315-360=-45[/tex]

So, instead of 1395, we can use just -45.

So, evaluate each trig function for -45:

1)

[tex]\sin(1395)=\sin(-45)[/tex]

Remember that we can move the negative inside of the sine outside. So:

[tex]=-\sin(45)[/tex]

Remember the sine of 45 from the unit circle:

[tex]=-\frac{\sqrt2}{2}[/tex]

2)

[tex]\cos(1395)=\cos(-45)[/tex]

Remember that we can ignore the negative inside of a cosine function. So:

[tex]=\cos(45)[/tex]

Evaluate using the unit circle:

[tex]=\frac{\sqrt 2}{2}[/tex]

Now, remember that tangent is sine over cosine. So: "

[tex]\tan(1395)=\tan(-45)=\frac{\sin(-45)}{\cos(-45)}[/tex]

We already know them. Substitute:

[tex]=\frac{-\frac{\sqrt 2}{2}}{\frac{\sqrt 2}{2}}[/tex]

Simplify:

[tex]=-1[/tex]

And we're done!