Answer:
1.65 g/cm³
Explanation:
We need to find the value of [tex]\dfrac{4.77\times 10^7\ g}{\dfrac{4}{3}(3.1416)(1.9\times 10^2\ cm)^3}[/tex].
So,
[tex]\dfrac{4.77\times 10^7\ g}{\dfrac{4}{3}(3.1416)(1.9\times 10^2\ cm)^3}\\\\\text{solving 4/3 first}\\\\ =\dfrac{4.77\times 10^7\ g}{1.34\times (3.1416)(1.9\times 10^2\ cm)^3}\\\\\\\text{solving}\ 1.9\times 10^2\\\\=\dfrac{4.77\times 10^7\ g}{1.34\times (3.1416)\times 6859000\ cm^3}\\\\ \text{Now solving denominator}\\=\dfrac{4.77\times 10^7\ g}{28874634.096\ cm^3}\\\\=1.65\ g/cm^3[/tex]
Hence, the answer is 1.65 g/cm³.