Answer:
[tex]\mathbf{E =3.33 \times 10^2 \ N/C}[/tex]
[tex]\mathbf{ V_A - V_B = 0.2551 \ Volts}[/tex]
Explanation:
Given that:
The charge on the ionized oxygen molecule = +e
The speed of the ionized oxygen molecule with this charge is 1.24 × 10³ m/s
distance travelled by the particle before rest is d = 0.766 m
According to the third equation of motion.
[tex]v^2 = u^2 +2as[/tex]
[tex]v^2 = u^2 +2(\dfrac{-eE}{m}) s[/tex]
[tex]0^2= u^2 +2(\dfrac{-eE}{m}) s[/tex]
[tex]E = \dfrac{mu^2}{2e* \ s}[/tex]
[tex]E = \dfrac{5.31 *10^{-26}* (1.24*10^3)^2}{2*1.6*10^{-19}*0.766*10^{-3}}[/tex]
[tex]\mathbf{E =3.33 \times 10^2 \ N/C}[/tex]
Thus, the electric field shows to be in the negative x-direction.
The potential difference between point A and B now is:
[tex]\Delta V = E.d \\ \\ V_A - V_B = 3.33 \times 10^2 \times 0.766 \times 10^{-3}[/tex]
[tex]\mathbf{ V_A - V_B = 0.2551 \ Volts}[/tex]