Functions and their Properties
Practice
Need help

Answer:
[tex]g(n-7)=\frac{n^{2}-14n+43}{7n-49}[/tex] → (a)
Step-by-step explanation:
We need to evaluate g(n - 7), where
Replace x by (n - 7) to evaluate it
∵ x = (n - 7)
∴ [tex]g(n-7)=\frac{(n-7)^{2}-6}{7(n-7)}[/tex]
→ Let us find (n - 7)²
∵ (n - 7)² = (n - 7)(n - 7) = (n)(n) + (n)(-7) + (-7)(n) + (-7)(-7)
∴ (n - 7)² = n² + (-7n) + (-7n) + 49 = n² + -14n + 49
∴ (n - 7)² = n² - 14n + 49
→ Find 7(n - 7)
∵ 7(n - 7) = 7(n) - 7(7)
∴ 7(n - 7) = 7n - 49
→ Now let us write then in the form above
∵ [tex]g(n-7)=\frac{n^{2}-14n+49-6}{7n-49}[/tex]
→ Add the like terms in the numerator
∴ [tex]g(n-7)=\frac{n^{2}-14n+43}{7n-49}[/tex]
The correct answer is (a)