Answer:
[tex]\dfrac{4^{-3}}{4^{-1}} = \dfrac{4^{1}}{4^{3}}[/tex]
[tex]\dfrac{4^{-3}}{4^{-1}} = \dfrac{1}{4^{2}}[/tex]
Step-by-step explanation:
Given
[tex]\dfrac{4^{-3}}{4^{-1}}[/tex]
Required
Choose equivalent expressions
Choosing the first answer:
[tex]\dfrac{4^{-3}}{4^{-1}}[/tex]
Split expressions
[tex]4^{-3} * \frac{1}{4^{-1}}[/tex]
Apply laws of indices: [tex](a^{-b} = \frac{1}{a^b})[/tex]
[tex]\frac{1}{4^3} * \frac{1}{4^{-1}}[/tex]
Apply laws of indices: [tex](a^{-b} = \frac{1}{a^b})[/tex]
[tex]\frac{1}{4^3} * \frac{1}{1/4}[/tex]
[tex]\frac{1}{4^3} * \frac{4^1}{1}[/tex]
[tex]\frac{4^1}{4^3}[/tex]
Hence:
[tex]\dfrac{4^{-3}}{4^{-1}} = \dfrac{4^{1}}{4^{3}}[/tex]
Choosing the second:
[tex]\dfrac{4^{-3}}{4^{-1}}[/tex]
Apply law of indices: [tex](\frac{a^m}{a^n} = a^{m-n})[/tex]
So,
[tex]\dfrac{4^{-3}}{4^{-1}} = 4^{-3-(-1)}[/tex]
[tex]\dfrac{4^{-3}}{4^{-1}} = 4^{-3+1)}[/tex]
[tex]\dfrac{4^{-3}}{4^{-1}} = 4^{-2}[/tex]
Apply law of indices: [tex](a^{-b} = \frac{1}{a^b})[/tex]
So:
[tex]\dfrac{4^{-3}}{4^{-1}} = \dfrac{1}{4^{2}}[/tex]