Respuesta :

Given

The function is

[tex]f(x)=3\sqrt{x}[/tex]

The function g(x) transform by shifting f(x) right 3 units.

To find:

The function g(x).

Step-by-step explanation:

The translation is defined as

[tex]g(x)=f(x+a)+b[/tex]

where, a is horizontal shift and b is vertical shift.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.

The function f(x) shifts only 3 units right. So,

[tex]a=-3,b=0[/tex]

Now,

[tex]g(x)=f(x+(-3))+0[/tex]

[tex]g(x)=f(x-3)[/tex]

[tex]g(x)=3\sqrt{x-3}[/tex]               [tex][\because f(x)=3\sqrt{x}][/tex]

Therefore, the required function is [tex]g(x)=3\sqrt{x-3}[/tex].