Respuesta :

We know that sum of the interior angles of any triangle equal 180° :

So :

A + B + C = 180°

45° + 75° + C = 180°

120° + C = 180°

Both sides minus ( 120°) :

C = 180° - 120°

C = 60°

_________________________________

According to the theorem of sinuses :

[tex] \frac{AB}{ \sin(C) } = \frac{BC}{ \sin(A) } \\ [/tex]

[tex] \frac{AB}{ \sin(60) } = \frac{12}{ \sin(45) } \\ [/tex]

[tex] \frac{AB}{ \frac{ \sqrt{3} }{2} } = \frac{12}{ \frac{ \sqrt{2} }{2} } \\ [/tex]

[tex]Multiply \: both \: sides \: by \: \frac{ \sqrt{3} }{2} [/tex]

[tex] AB = \frac{24}{ \sqrt{2} } \times \frac{ \sqrt{3} }{2} \\ [/tex]

[tex]AB = \frac{12 \sqrt{3} }{ \sqrt{2} } \\ [/tex]

[tex]AB = \frac{2 \times 6 \sqrt{3} }{ \sqrt{2} } \\ [/tex]

[tex]AB = \frac{ ({ \sqrt{2} })^{2} \times 6 \sqrt{3} }{ \sqrt{2} } \\ [/tex]

[tex]AB = \frac{ \sqrt{2} \times \sqrt{2} \times 6 \sqrt{3} }{ \sqrt{2} } \\ [/tex]

[tex]AB = \frac{ \sqrt{2} \times 6 \sqrt{3} }{1} \\ [/tex]

[tex]AB = \sqrt{2} \times 6 \sqrt{3} [/tex]

[tex]AB = 6 \sqrt{2 \times 3} [/tex]

[tex]AB = 6 \sqrt{6} [/tex]

_________________________________

I think this is the correct answer.

And we're done.

Thanks for watching buddy good luck.

♥️♥️♥️♥️♥️