Step-by-step explanation:
1.
[tex] {m}^{2} + 15m + 56 = ( \: \: \: \: \: )(m + 8) \\ solution \\ \: \: taking \: lhs \\ = {m}^{2} + 15m + 5 \\ = {m}^{2} + (7 + 8)m + 56 \\ \: \: \: \: = {m}^{2} + 8m + 7m + 56 \: \: \\ now \: taking \: common \: factor \\ m(m + 8) + 7(m + 8) \\ (m + 7)(m + 8) \\ now \\ {m}^{2} + 15m + 56 = (m + 7)(m + 8)[/tex]
2.
[tex] {a}^{2} + 5ab + 6 {b}^{2} = ( a + 2b)( \: \: \: \: \: \: \: \: ) \\ solution \\ taking \: \: lhs \\ = {a}^{2} + 5ab + 6 {b}^{2} \\ = {a}^{2} + ( 3+ 2)ab + 6 {b}^{2} \\ = {a}^{2} + 3ab + 2ab + 6 {b}^{2} \\now \: taking \: common \: factor \\ a(a + 3b) + 2b(a + 3) \\ (a + 2b)(a + 3) \\ now \\ {a}^{2} + 5ab + 6 {b}^{2} = ( a + 2b)( a + 3) ans[/tex]
this may help you(: