Given:
Area of rectangle = [tex]15\dfrac{7}{16}[/tex] sq. feet.
Width of the mirror = [tex]3\dfrac{1}{4}[/tex] feet.
To find:
Whether it will fit on the wall whose length is 5 foot.
Solution:
We know that, area of a rectangle is
[tex]Area=length\times width[/tex]
[tex]\dfrac{Area}{width}=length[/tex]
Substituting the given values, we get
[tex]Length=\dfrac{15\dfrac{7}{16}}{3\dfrac{1}{4}}[/tex]
[tex]Length=\dfrac{\dfrac{15\times 16+7}{16}}{\dfrac{3\times 4+1}{4}}[/tex]
[tex]Length=\dfrac{\dfrac{240+7}{16}}{\dfrac{12+1}{4}}[/tex]
[tex]Length=\dfrac{\dfrac{247}{16}}{\dfrac{13}{4}}[/tex]
[tex]Length=\dfrac{247}{16}\times \dfrac{4}{13}[/tex]
[tex]Length=4.75 [/tex]
So, length of mirror is 4.75 feet which is less than 5 feet.
Therefore, the mirror will fit on the wall.