Answer:
[tex]g_2=\dfrac{7}{8}g[/tex]
Explanation:
G = Gravitational constant
M = Mass of planet
R = Radius of planet
Acceleration due to gravity on first planet
[tex]g=\dfrac{GM}{R}[/tex]
Assuming that the planets have the same mass density [tex]\rho[/tex]
Density of first planet
[tex]\rho=\dfrac{M}{V}\\\Rightarrow \rho=\dfrac{M}{\dfrac{4}{3}\pi R^3}\\\Rightarrow M=\rho \dfrac{4}{3}\pi R^3[/tex]
Density of second planet
[tex]\rho=\dfrac{M_2}{V_2}=\dfrac{M_2}{\dfrac{4}{3}\pi R^3-\dfrac{4}{3}\pi (0.5R)^3}\\\Rightarrow \rho=\dfrac{M_2}{\dfrac{4}{3}\pi R^3(1-\dfrac{1}{2^3})}\\\Rightarrow \rho=\dfrac{M_2}{\dfrac{4}{3}\pi R^3(1-\dfrac{1}{8})}\\\Rightarrow \rho=\dfrac{M_2}{\dfrac{4}{3}\pi R^3(\dfrac{7}{8})}\\\Rightarrow M_2=\rho\dfrac{4}{3}\pi R^3(\dfrac{7}{8})\\\Rightarrow M_2=M\dfrac{7}{8}[/tex]
Acceleration due to gravity on the second planet
[tex]g_2=\dfrac{GM_2}{R}\\\Rightarrow g_2=\dfrac{GM\dfrac{7}{8}}{R}\\\Rightarrow g_2=\dfrac{7}{8}g[/tex]
The acceleration due to gravity of the planet would be [tex]\dfrac{7}{8}[/tex] times the acceleration due to gravity on the first planet.