Given:
The point is T(-3,7).
To find:
The image T' after [tex]R_{y-axis}\circ R_{x-axis}[/tex].
Solution:
[tex]R_{y-axis}\circ R_{x-axis}[/tex], it means reflection across x-axis is followed by reflection across y-axis.
If a point is reflected across the x-axis, then
[tex](x,y)\to (x,-y)[/tex]
[tex]T(-3,7)\to T_1(-3,-7)[/tex]
Then point is reflected across the y-axis. So,
[tex](x,y)\to (-x,y)[/tex]
[tex]T_1(-3,-7)\to T'(3,-7)[/tex]
Therefore, the coordinates of point T' are (3,-7).