Respuesta :

Answer:

          f(x) = 5x² + 2x

          g(x) = 6x - 6

Step-by-step explanation:

[tex]\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}\\\\6(x^2-3x+2)\ne0\ \iff\ x=\frac{3\pm\sqrt{9-8}}{2}\ne0\ \iff\ x\ne2\ \wedge\ x\ne1\\\\\\\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}=\dfrac{x(5x^2-8x-4)}{6(x^2-3x+2)}=\dfrac{x(5x^2-10x+2x-4)}{6(x^2-2x-x+2)}=\\\\\\=\dfrac{x[5x(x-2)+2(x-2)]}{6[x(x-2)-(x-2)]} =\dfrac{x(x-2)(5x+2)}{6(x-2)(x-1)}=\dfrac{x(5x+2)}{6(x-1)}=\dfrac{5x^2+2x}{6x-6}\\\\\\f(x)=5x^2+2x\\\\g(x)=6x-6[/tex]