A 5 kg ball moving to the right at a speed of 6 m/s strikes another 4 kg
ball moving to the left at 5 m/s. What is the velocity of each ball after the
collision?

Respuesta :

Answer:

The 5 kg ball moves 3.78 m/s to the left, and the 4 kg ball moves 7.22 m/s to the right.

Explanation:

Momentum before = momentum after

m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂

(5 kg) (6 m/s) + (4 kg) (-5 m/s) = (5 kg) v₁ + (4 kg) v₂

10 m/s = 5 v₁ + 4 v₂

Assuming an elastic collision, kinetic energy is conserved.

½ m₁ u₁² + ½ m₂ u₂² = ½ m₁ v₁² + ½ m₂ v₂²

m₁ u₁² + m₂ u₂² = m₁ v₁² + m₂ v₂²

(5 kg) (6 m/s)² + (4 kg) (-5 m/s)² = (5 kg) v₁² + (4 kg) v₂²

280 m²/s² = 5 v₁² + 4 v₂²

Substituting:

v₂ = (10 − 5 v₁) / 4

280 = 5 v₁² + 4 [(10 − 5 v₁) / 4]²

280 = 5 v₁² + (10 − 5 v₁)² / 4

1120 = 20 v₁² + (10 − 5 v₁)²

1120 = 20 v₁² + 100 − 100 v₁ + 25 v₁²

0 = 45 v₁² − 100 v₁ − 1020

0 = 9 v₁² − 20 v₁ − 204

0 = (9 v₁ + 34) (v₁ − 6)

v₁ = -3.78 m/s or 6 m/s

u₁ = 6 m/s, so v₁ = -3.78 m/s.  Solving for v₂:

v₂ = (10 − 5 v₁) / 4

v₂ = 7.22 m/s

The 5 kg ball moves 3.78 m/s to the left, and the 4 kg ball moves 7.22 m/s to the right.