Answer:
[tex]f(-1)=\frac{-1}{2}[/tex]
[tex]g(-2)=\frac{5}{32}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
Step 1: Define
[tex]f(x)=\frac{2x-1}{2x^3-8x}[/tex]
[tex]g(x)=\frac{2x-1}{2x^3+8x}[/tex]
f(-1) is x = -1
g(-2) is x = -2
Step 2: Evalaute
f(-1)
- Substitute: [tex]f(-1)=\frac{2(-1)-1}{2(-1)^3-8(-1)}[/tex]
- Evaluate: [tex]f(-1)=\frac{2(-1)-1}{2(-1)-8(-1)}[/tex]
- Multiply: [tex]f(-1)=\frac{-2-1}{-2+8}[/tex]
- Subtract/Add: [tex]f(-1)=\frac{-3}{6}[/tex]
- Divide: [tex]f(-1)=\frac{-1}{2}[/tex]
g(-2)
- Substitute: [tex]g(-2)=\frac{2(-2)-1}{2(-2)^3+8(-2)}[/tex]
- Evaluate: [tex]g(-2)=\frac{2(-2)-1}{2(-8)+8(-2)}[/tex]
- Multiply: [tex]g(-2)=\frac{-4-1}{-16-16}[/tex]
- Subtract: [tex]g(-2)=\frac{-5}{-32}[/tex]
- Simplify: [tex]g(-2)=\frac{5}{32}[/tex]
And we have our final answers!