Respuesta :

Answer:

Proof below

Step-by-step explanation:

Trigonometric Identities

Prove that:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=2+\sec x\csc x[/tex]

We need to use the following basic identities:

[tex]\sin^2x+\cos^2x=1\qquad\qquad [1][/tex]

[tex]\displaystyle \sec x=\frac{1}{\cos x}\qquad\qquad [2][/tex]

[tex]\displaystyle \csc x=\frac{1}{\sin x}\qquad\qquad [3][/tex]

Operating on the left side:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=\frac{\sin^2 x+2\cos x\sin x+\cos^2x}{\sin x\cos x}[/tex]

Applying [1]:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=\frac{1+2\cos x\sin x}{\sin x\cos x}[/tex]

Separating fractions:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}+\frac{2\cos x\sin x}{\sin x\cos x}[/tex]

Simplifying the second term:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}+2[/tex]

Applying [2] and [3]

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=\csc x\sec x+2[/tex]

Rearranging:

[tex]\displaystyle \frac{(\sin x+\cos x)^2}{\sin x\cos x}=2+\sec x\csc x[/tex]

Hence proved.