Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{-\csc x(\cot x \sin x + \cos x)}{3\sin^2 x}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \frac{\csc x}{3\sin x}[/tex]

Step 2: Differentiate

  1. Derivative Property [Multiplied Constant]:                                                   [tex]\displaystyle y' = \frac{1}{3} \frac{d}{dx}[\frac{\csc x}{\sin x}][/tex]
  2. Derivative Rule [Quotient Rule]:                                                                   [tex]\displaystyle y' = \frac{1}{3} \bigg( \frac{(\csc x)' \sin x - \csc x (\sin x)'}{\sin^2 x} \bigg)[/tex]
  3. Trigonometric Differentiation:                                                                       [tex]\displaystyle y' = \frac{1}{3} \bigg( \frac{-\csc x \cot x \sin x - \csc x \cos x}{\sin^2 x} \bigg)[/tex]
  4. Factor:                                                                                                           [tex]\displaystyle y' = \frac{1}{3} \bigg( \frac{-\csc x (\cot x \sin x + \cos x)}{\sin^2 x} \bigg)[/tex]
  5. Simplify:                                                                                                         [tex]\displaystyle y' = \frac{-\csc x (\cot x \sin x + \cos x)}{3\sin^2 x}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation