Which expression is equivalent to (StartFraction x Superscript negative 6 Baseline Over x squared EndFraction) cubed? StartFraction 1 Over x EndFraction StartFraction 1 Over x Superscript 5 Baseline EndFraction StartFraction 1 Over x Superscript 9 Baseline EndFraction StartFraction 1 Over x Superscript 24 Baseline EndFraction

Respuesta :

Answer:

[tex](\frac{x^{-6}}{x^2})^3 = \frac{1}{x^{24}}[/tex]

Step-by-step explanation:

Given

[tex](\frac{x^{-6}}{x^2})^3[/tex]

Required

Determine the equivalent expression

[tex](\frac{x^{-6}}{x^2})^3[/tex]

First, we need to evaluate the expression in the bracket:

Apply the following law of indices:

[tex]\frac{x^a}{x^b} = x^{a-b}[/tex]

So:

[tex](\frac{x^{-6}}{x^2})^3[/tex] becomes

= [tex](x^{-6-2})^3[/tex]

= [tex](x^{-8})^3[/tex]

Open the bracket

= [tex]x^{-8*3}[/tex]

= [tex]x^{-24}[/tex]

Convert the above expression to fraction

= [tex]\frac{1}{x^{24}}[/tex]

Hence:

[tex](\frac{x^{-6}}{x^2})^3 = \frac{1}{x^{24}}[/tex]

Answer:

D on edge 2020 1/x24

Step-by-step explanation: