Answer:
[tex]M = (2,2)[/tex]
Step-by-step explanation:
Given
[tex](3,8)[/tex] and [tex](1,-4)[/tex]
Required
Determine the coordinate of the midpoint (M)
This is calculated as thus:
[tex]M = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]
Where
[tex](3,8)[/tex] -- [tex](x_1,y_1)[/tex]
[tex](1,-4)[/tex] -- [tex](x_2,y_2)[/tex]
So, we have:
[tex]M = \frac{1}{2}(3 + 1, 8 - 4)[/tex]
[tex]M = \frac{1}{2}(4, 4)[/tex]
[tex]M = (\frac{1}{2}*4, \frac{1}{2}*4)[/tex]
[tex]M = (2,2)[/tex]
Hence, the coordinates of the midpoint is (2,2)