Write an equation in slope-intercept form for the line that has the given slope and contains the point. Please show some work.( will mark brainliest)(4,-2)&(2,-1)

Respuesta :

Answer:

An equation in the slope-intercept form will be:

[tex]y=-\frac{1}{2}x+0[/tex]

Step-by-step explanation:

Given the points

  • (4, -2)
  • (2, -1)

Finding the slope between the points

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(4,\:-2\right),\:\left(x_2,\:y_2\right)=\left(2,\:-1\right)[/tex]

[tex]m=-\frac{1}{2}[/tex]

We know that the slope-intercept form of the line equation is

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept.

substituting the values m=-1/2 and the point (4, -2) to determine the y-intercept i.e. 'b'.

[tex]y=mx+b[/tex]

[tex]-2=-\frac{1}{2}\left(4\right)+b[/tex]

[tex]\frac{1}{2}\cdot \:4+b=-2[/tex]

[tex]-2+b=-2[/tex]

[tex]b=0[/tex]

Now, substituting the values b=0 and m=-1/2 to determine the equation in the slope-intercept form.

[tex]y=mx+b[/tex]

[tex]y=-\frac{1}{2}x+0[/tex]

Thus, an equation in the slope-intercept form will be:

[tex]y=-\frac{1}{2}x+0[/tex]