Respuesta :

Answer:

[tex](f\circ h)(2)=2[/tex]

Step-by-step explanation:

Composite Function

Given f(x) and h(x) real functions, the composite function named [tex](f\circ h)(x)[/tex] is defined as:

[tex](f\circ h)(x)=f(h(x))[/tex]

It can be found by substituting h into f.

We are given the functions:

[tex]f(x)=2x^2-9x+2[/tex]

[tex]h(x)=x^2-4[/tex]

It's required to find [tex](f\circ h)(2)[/tex]

As defined above:

[tex](f\circ h)(x)=f(h(x))[/tex]

Thus:

[tex](f\circ h)(2)=f(h(2))[/tex]

Find h(2):

[tex]h(2)=2^2-4=0[/tex]

h(2)=0

Now:

[tex](f\circ h)(2)=2(0)^2-9(0)+2[/tex]

[tex](f\circ h)(2)=2[/tex]