contestada

. If a pendulum-driven clock gains 5.00 s/day, what fractional change in pendulum length must be made for it to keep perfect time

Respuesta :

Answer:

The appropriate response will be "Length must be increased by 0.012%".

Explanation:

The given values is:

ΔT = 5 s/day

Now,

⇒ [tex]\frac{\Delta T}{T} =\frac{5}{24\times 60\times 60}[/tex]

On multiplying both sides by  "100", we get

⇒ [tex]\frac{\Delta T}{T}\times 100 =\frac{500}{24\times 60\times 60}[/tex]

⇒ [tex]\frac{\Delta T}{T}\times 100=0.005787[/tex] (%)

 [tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

On substituting the values, we get

⇒ [tex]\frac{\Delta T}{T}[/tex]% = [tex]\frac{1}{2}\times \frac{\Delta l}{l}[/tex]%

On applying cross multiplication, we get

⇒ [tex]\frac{\Delta l}{l}[/tex]% = [tex]2\times \frac{\Delta T}{T}[/tex]%

⇒        = [tex]2\times 0.05787[/tex]

⇒        = [tex]0.011574[/tex]

⇒        = [tex]0.012[/tex]%